The relative performance of indel-coding methods in simulations

Simmons MP, Müller KF, Norton AP

Research article (journal)


We used simulations to compare the performance of 10 approaches that have been used for treating unambiguously aligned gaps in phylogenetic analyses. We examined how these approaches perform under the ideal conditions of correct alignments, as well as how robust they are to errors caused by use of inferred alignments. Our results indicate that 5th-state coding dramatically outperformed all other coding methods, which in turn all outperformed treating gaps as missing data or excluding gapped positions. Simple indel coding (SIC) and modified complex indel coding (MCIC) performed about the same, and generally outperformed the other indel-coding methods. The high performance of 5th-state coding was largely found to be a weighting artifact. We suggest that MCIC-coded gap characters be scored for all unambiguously aligned gaps in parsimony-based molecular phylogenetic analyses. When the number of terminals sampled precludes the use of MCIC, SIC may be used as an effective substitute.

Details zur Publikation

Pages: 17
Release year: 2007
Language in which the publication is writtenEnglish