Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots.

Neuenkamp L; Zobel M; Koorem K; Jairus T; Davison J; Öpik M; Vasar M; Moora M

Research article (journal) | Peer reviewed

Abstract

Plants involved in the arbuscular mycorrhizal (AM) symbiosis trade photosynthetically derived carbon for fungal-provided soil nutrients. However, little is known about how plant light demand and ambient light conditions influence root-associating AM fungal communities. We conducted a manipulative field experiment to test whether plants' shade-tolerance influences their root AM fungal communities in open and shaded grassland sites. We found similar light-dependent shifts in AM fungal community structure for experimental bait plant roots and the surrounding soil. Yet, deviation from the surrounding soil towards lower AM fungal beta-diversity in the roots of shade-intolerant plants in shade suggested preferential carbon allocation to specific AM fungi in conditions where plant-assimilated carbon available to fungi was limited. We conclude that favourable environmental conditions widen the plant biotic niche, as demonstrated here with optimal light availability reducing plants' selectivity for specific AM fungi, and promote compatibility with a larger number of AM fungal taxa.

Details about the publication

JournalEcology Letters
Volume24
Issue3
Page range426-437
StatusPublished
Release year2021 (30/03/2021)
Language in which the publication is writtenEnglish
DOI10.1111/ele.13656
KeywordsMycobiome; Mycorrhizae; Plant Roots; Plants; Soil; Soil Microbiology; Symbiosis