Enabling Aqueous Processing of Ni‐Rich Layered Oxide Cathode Materials by Addition of Lithium Sulphate

Heidbüchel, Marcel; Schultz, Thorsten; Placke, Tobias; Winter, Martin; Koch, Norbert; Schmuch, Richard; Gomez-Martin; Aurora

Research article (journal)

Abstract

Aqueous processing of Ni-rich layered oxide cathode materials is a promising approach to simultaneously decrease electrode manufacturing costs, while bringing environmental benefits by substituting the state-of-the-art (often toxic and costly) organic processing solvents. However, an aqueous environment remains challenging due to the high reactivity of Ni-rich layered oxides towards moisture, leading to lithium leaching and Al current collector corrosion because of the resulting high pH value of the aqueous electrode paste. Herein, a facile method was developed to enable aqueous processing of LiNi0.8Co0.1Mn0.1O2 (NCM811) by the addition of lithium sulfate (Li2SO4) during electrode paste dispersion. The aqueously processed electrodes retained 80 % of their initial capacity after 400 cycles in NCM811||graphite full cells, while electrodes processed without the addition of Li2SO4 reached 80 % of their capacity after only 200 cycles. Furthermore, with regard to electrochemical performance, aqueously processed electrodes using carbon-coated Al current collector outperformed reference electrodes based on state-of-the-art production processes involving N-methyl-2-pyrrolidone as processing solvent and fluorinated binders. The positive impact on cycle life by the addition of Li2SO4 stemmed from a formed sulfate coating as well as different surface species, protecting the NCM811 surface against degradation. Results reported herein open a new avenue for the processing of Ni-rich NCM electrodes using more sustainable aqueous routes.

Details zur Publikation

Release year: 2022
Language in which the publication is writtenEnglish
Link to the full text: https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cssc.202202161