The universal family of semi-stable p-adic Galois representations

Hellmann, Eugen Hartl, Urs

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Let K be a finite field extension of Qp and let GK be its absolute Galois group. We construct the universal family of filtered (ϕ, N )-modules, or (more generally) the universal family of (ϕ, N )-modules with a Hodge-Pink lattice, and study its geometric properties. Building on this, we construct the universal family of semi-stable GK -representations in Qp-algebras. All these universal families are parametrized by moduli spaces which are Artin stacks in schemes or in adic spaces locally of finite type over Qp in the sense of Huber. This has conjectural applications to the p-adic local Langlands program.

Details zur Publikation

FachzeitschriftAlgebra and Number Theory
Jahrgang / Bandnr. / Volume14
Ausgabe / Heftnr. / Issue5
Seitenbereich1055-1121
StatusVeröffentlicht
Veröffentlichungsjahr2020
Sprache, in der die Publikation verfasst istEnglisch
StichwörterThe universal family of semi-stable p-adic Galois representations

Autor*innen der Universität Münster

Hartl, Urs
Professur für Arithmetische Geometrie (Prof. Hartl)
Hellmann, Eugen
Professur für Theoretische Mathematik (Prof. Hellmann)