Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries

Wu S.; Kou Z.; Lai Q.; Lan S.; Katnagallu S.S.; Hahn H.; Taheriniya S.; Wilde G.; Gleiter H.; Feng T.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

The development of high-strength metals has driven the endeavor of pushing the limit of grain size (d) reduction according to the Hall-Petch law. But the continuous grain refinement is particularly challenging, raising also the problem of inverse Hall-Petch effect. Here, we show that the nanograined metals (NMs) with d of tens of nanometers could be strengthened to the level comparable to or even beyond that of the extremely-fine NMs (d ~ 5 nm) attributing to the dislocation exhaustion. We design the Fe-Ni NM with intergranular Ni enrichment. The results show triggering of structural transformation at grain boundaries (GBs) at low temperature, which consumes lattice dislocations significantly. Therefore, the plasticity in the dislocation-exhausted NMs is suggested to be dominated by the activation of GB dislocation sources, leading to the ultra-hardening effect. This approach demonstrates a new pathway to explore NMs with desired properties by tailoring phase transformations via GB physico-chemical engineering.

Details zur Publikation

FachzeitschriftNature Communications
Jahrgang / Bandnr. / Volume13
Ausgabe / Heftnr. / Issue1
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1038/s41467-022-33257-1
Link zum Volltexthttps://api.elsevier.com/content/abstract/scopus_id/85138131586
Stichwörtergrain boundaries

Autor*innen der Universität Münster

Taheriniya, Shabnam
Professur für Materialphysik (Prof. Wilde)
Wilde, Gerhard
Professur für Materialphysik (Prof. Wilde)