On Newton strata in the B_{dR}^+-Grassmannian.

Viehmann, Eva

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We study parabolic reductions and Newton points of G-bundles on the Fargues–Fontaine curve and the Newton stratification on the B+dR𝐵dR+-Grassmannian for any reductive group G. Let BunGBun𝐺 be the stack of G-bundles on the Fargues–Fontaine curve. Our first main result is to show that under the identification of the points of BunGBun𝐺 with Kottwitz’s set B(G)𝐵(𝐺), the closure relations on |BunG||Bun𝐺| coincide with the opposite of the usual partial order on B(G)𝐵(𝐺). Furthermore, we prove that every non-Hodge–Newton decomposable Newton stratum in a minuscule affine Schubert cell in the B+dR𝐵dR+-Grassmannian intersects the weakly admissible locus, proving a conjecture of Chen. On the way, we study several interesting properties of parabolic reductions of G-bundles, and we determine which Newton strata have classical points.

Details zur Publikation

FachzeitschriftDuke Mathematical Journal (Duke Math. J.)
Jahrgang / Bandnr. / Volume173
Ausgabe / Heftnr. / Issue1
Seitenbereich177-225
StatusVeröffentlicht
Veröffentlichungsjahr2023
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1215/00127094-2024-0005
StichwörterHarder-Narasimhan strata; BdR+-Grassmannian; Fargues-Fontaine curve; Langlands program bzw. Newton strata; BdR+-Grassmannian; Fargues-Fontaine curve; Langlands program

Autor*innen der Universität Münster

Viehmann, Eva
Professur für Theoretische Mathematik (Prof. Viehmann)