Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling

Wenzel, Tizian; Haasdonk, Bernard; Kleikamp, Hendrik; Ohlberger, Mario; Schindler, Felix

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

In the framework of reduced basis methods, we recently introduced a new certified hierarchical and adaptive surrogate model, which can be used for efficient approximation of input-output maps that are governed by parametrized partial differential equations. This adaptive approach combines a full order model, a reduced order model and a machine-learning model. In this contribution, we extend the approach by leveraging novel kernel models for the machine learning part, especially structured deep kernel networks as well as two layered kernel models. We demonstrate the usability of those enhanced kernel models for the RB-ML-ROM surrogate modeling chain and highlight their benefits in numerical experiments.

Details zur Publikation

Herausgeber*innenLirkov, I.; Margenov, S.
BuchtitelLarge-Scale Scientific Computations
Seitenbereich117-125
VerlagSpringer Nature
ErscheinungsortCham
Titel der ReiheLecture Notes in Computer Science
Nr. in Reihe13952
StatusVeröffentlicht
Veröffentlichungsjahr2024
Sprache, in der die Publikation verfasst istEnglisch
KonferenzLarge-Scale Scientific Computations. LSSC 2023, Sozopol, Bulgarien
ISBN978-3-031-56207-5
DOI: 10.1007/978-3-031-56208-2_11
StichwörterDeep Kernel Methods; Certified RB-ML-ROM Modeling; Machine Learning; Reduced Order Models; Error Estimation

Autor*innen der Universität Münster

Kleikamp, Hendrik
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)
Schindler, Felix Tobias
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)