Exploring bifurcations in Bose–Einstein condensates via phase field crystal models

Steinberg, Alina; Maucher, Fabian; Gurevich, Svetlana; Thiele Uwe

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

To facilitate the analysis of pattern formation and the related phase transitions in Bose–Einstein condensates, we present an explicit approximate mapping from the nonlocal Gross–Pitaevskii equation with cubic nonlinearity to a phase field crystal (PFC) model. This approximation is valid close to the superfluid–supersolid phase transition boundary. The simplified PFC model permits the exploration of bifurcations and phase transitions via numerical path continuation employing standard software. While revealing the detailed structure of the bifurcations present in the system, we demonstrate the existence of localized states in the PFC approximation. Finally, we discuss how higher-order nonlinearities change the structure of the bifurcation diagram representing the transitions found in the system.

Details zur Publikation

FachzeitschriftChaos
Jahrgang / Bandnr. / Volume32
Ausgabe / Heftnr. / Issue11
StatusVeröffentlicht
Veröffentlichungsjahr2022 (04.11.2022)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1063/5.0101401
Link zum Volltexthttps://aip.scitation.org/doi/10.1063/5.0101401
StichwörterMusterbildung und Selbstorganisation, Bifurkationstheorie, Lokalisierte Zustände, Phasenfeldkristallmodell, Bose-Einstein Kondensat, Numerische Kontinuierung, Linear stability analysis; Localized states; Superfluids; Bose-Einstein condensate; Phase transitions; Gross-Pitaevskii equation

Autor*innen der Universität Münster

Gurevich, Svetlana
Professur für Theoretische Physik (Prof. Thiele)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)
Center for Soft Nanoscience (SoN)
Institut für Theoretische Physik
Steinberg, Alina Barbara
Professur für Theoretische Physik (Prof. Thiele)
Thiele, Uwe
Professur für Theoretische Physik (Prof. Thiele)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)