Image-Based Identification of Plant Species Using a Model-Free Approach and Active Learning

Grimm J, Hoffmann M, Stöver BC, Müller KF, Steinhage V

Forschungsartikel (Buchbeitrag) | Peer reviewed

Zusammenfassung

Collection and maintenance of biodiversity data is in need for automation. We present first results of an automated and model-free approach to the species identification from herbarium specimens kept in herbaria worldwide. Methodologically, our approach relies on standard methods for the detection and description of so-called interest points and their classification into species-characteristic categories using standard supervised learning tools. To keep the approach model-free on the one hand but also offer opportunities for species identification even in very challenging cases on the other hand, we allow to induce specific knowledge about important visual cues by using concepts of active learning on demand. First encouraging results on selected fern species show recognition accuracies between 94 % and 100 %.

Details zur Publikation

Herausgeber*innenFriedrich G, Helmert M, Wotawa F
BuchtitelKI 2016: Advances in Artificial Intelligence
Seitenbereich169-176
VerlagSpringer International Publishing
Titel der ReiheLecture Notes in Computer Science (ISSN: 0302-9743)
StatusVeröffentlicht
Veröffentlichungsjahr2016 (26.09.2016)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/978-3-319-46073-4_16

Autor*innen der Universität Münster

Müller, Kai
Arbeitsgruppe Evolution und Biodiversität der Pflanzen (Prof. Müller)
Stöver, Ben
Arbeitsgruppe Evolution und Biodiversität der Pflanzen (Prof. Müller)