Simmons MP, Zhang, Webb CT, Müller KF
Forschungsartikel (Zeitschrift)AFLPs (and to a lesser extent ISSRs and RAPDs) are increasingly being used for phylogenetic inference among closely related species. Presence/absence characters for each AFLP allele treat all absences as homologous to one another. With three or more alleles, terminals are grouped by their shared absence of alleles in character-based phylogenetic-inference methods in a manner that is not redundant with their shared presence of an alternative allele. We conducted simulations to quantify how severe the negative effect of using presence/absence characters of individual bands is for phylogenetic inference relative to standard multistate characters. We examined alternative tree topologies, relative branch lengths, numbers of characters, rates of evolution, and numbers of alternative alleles, using both parsimony and Nei-and-Li distance analyses. Multistate parsimony generally outperformed presence/absence parsimony, which in turn outperformed Nei-and-Li distance. Increasing the character-state space (i.e., the number of alternative character states available) was found to be advantageous for all three methods of analysis examined, but was most advantageous for multistate parsimony. However, the advantage of multistate parsimony relative to Nei-and-Li distance decreased when applied to more divergent characters. More parsimony-in formative variation generally alleviated the problem associated with scoring multistate characters as presence/absence characters. The ensemble consistency index was lower for presence/absence characters relative to multistate characters.
Müller, Kai | Arbeitsgruppe Evolution und Biodiversität der Pflanzen (Prof. Müller) |