Convergence of the Two-Dimensional Dynamic Ising-Kac Model to Φ24

Mourrat, Jean-Christophe; Weber, Hendrik

Research article (journal) | Peer reviewed

Abstract

The Ising-Kac model is a variant of the ferromagnetic Ising model in which each spin variable interacts with all spins in a neighborhood of radius γ− 1 for around its base point. We study the Glauber dynamics for this model on a discrete two-dimensional torus for a system size and for an inverse temperature close to the critical value of the mean field model. We show that the suitably rescaled coarse-grained spin field converges in distribution to the solution of a nonlinear stochastic partial differential equation. This equation is the dynamic version of the quantum field theory, which is formally given by a reaction-diffusion equation driven by an additive space-time white noise. It is well-known that in two spatial dimensions such equations are distribution valued and a Wick renormalization has to be performed in order to define the nonlinear term. Formally, this renormalization corresponds to adding an infinite mass term to the equation. We show that this need for renormalization for the limiting equation is reflected in the discrete system by a shift of the critical temperature away from its mean field value.© 2016 by the authors. Communications on Pure and Applied Mathematics is published by Wiley Periodicals, Inc., on behalf of the Courant Institute of Mathematics.

Details about the publication

JournalCommunications on Pure and Applied Mathematics (Comm. Pure Appl. Math.)
Volume70
Issue4
Page range717-812
StatusPublished
Release year2017
DOI10.1002/cpa.21655
KeywordsIsing-Kac model; Glauber dynamics; mean field model; renormalization

Authors from the University of Münster

Weber, Hendrik
Professorship of Mathematics (Prof. Weber)