Local training and enrichment based on a residual localization strategy

Tim Keil, Mario Ohlberger, Felix Schindler, Julia Schleuß

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

To efficiently tackle parametrized multi and/or large scale problems, we propose an adaptive localized model order reduction framework combining both local offline training and local online enrichment with localized error control. For the latter, we adapt the residual localization strategy introduced in [Buhr, Engwer, Ohlberger, Rave, SIAM J. Sci. Comput., 2017] which allows to derive a localized a posteriori error estimator that can be employed to adaptively enrich the reduced solution space locally where needed. Numerical experiments demonstrate the potential of the proposed approach.

Details zur Publikation

Herausgeber*innenFrolkovič, P; Mikula, K; Ševčovič, D
BuchtitelProceedings of the Conference Algoritmy 2024
Seitenbereich76-84
VerlagJednota slovenských matematikov a fyzikov
ErscheinungsortBratislava
Titel der ReiheProceedings of the Conference Algoritmy
Nr. in Reihe8
StatusVeröffentlicht
Veröffentlichungsjahr2024
KonferenzAlgoritmy 2024, Podbanske, Slowakei
ISBN978-80-89829-33-0
Link zum Volltexthttp://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/2157
Stichwörterlocalized model reduction; randomized training; online enrichment; residual localization

Autor*innen der Universität Münster

Keil, Tim
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)
Schindler, Felix Tobias
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Schleuß, Julia
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)