Gavrilenko Pavel, Haasdonk Bernard, Iliev Oleg, Ohlberger Mario, Schindler Felix, Toktaliev Pavel, Wenzel Tizian, Youssef Maha
Forschungsartikel (Buchbeitrag)
We present an integrated approach for the use of simulated data from full order discretization as well as projection-based Reduced Basis reduced order models for the training of machine learning approaches, in particular Kernel Methods, in order to achieve fast, reliable predictive models for the chemical conversion rate in reactive flows with varying transport regimes.
Herausgeber*innen: Lirkov Ivan, Margenov Svetozar
Buchtitel: Large-Scale Scientific Computing
Veröffentlichungsjahr: 2022
Verlag: Springer
ISBN: 978-3-030-97548-7
Sprache, in der die Publikation verfasst ist: Englisch
Veranstaltung: Cham
Link zum Volltext: https://doi.org/10.1007/978-3-030-97549-4_43