An adaptive Multiscale Finite Element Method

Henning Patrick, Ohlberger Mario, Schweizer Benn

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

This work is devoted to an adaptive multiscale finite element method (MsFEM) for solving elliptic problems with rapidly oscillating coefficients. Starting from a general version of the MsFEM with oversampling, we derive an a posteriori estimate for the $H^1$-error between the exact solution of the problem and a corresponding MsFEM approximation. Our estimate holds without any assumptions on scale separation or on the type of the heterogeneity. The estimator splits into different contributions which account for the coarse grid error, the fine grid error and the oversampling error. Based on the error estimate we construct an adaptive algorithm that is validated in numerical experiments.

Details zur Publikation

Jahrgang / Bandnr. / Volume12
Ausgabe / Heftnr. / Issue3
Seitenbereich1078-1107
StatusVeröffentlicht
Veröffentlichungsjahr2014
Sprache, in der die Publikation verfasst istEnglisch
DOI: 10.1137/120886856
Stichwörteradaptivity; MsFEM; multiscale; oversampling

Autor*innen der Universität Münster

Henning, Patrick
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)