Ohlberger M, Schindler F
Forschungsartikel in Sammelband (Konferenz)
We present a localized a-posteriori error estimate for the localized reduced basis multi-scale (LRBMS) method [Albrecht, Haasdonk, Kaulmann, Ohlberger (2012): The localized reduced basis multiscale method]. The LRBMS is a combination of numerical multi-scale methods and model reduction using reduced basis methods to efficiently reduce the computational complexity of parametric multi-scale problems with respect to the multi-scale parameter ε and the online parameter μ simultaneously. We formulate the LRBMS based on a generalization of the SWIPDG discretization presented in [Ern, Stephansen, Vohralik (2010): Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems] on a coarse partition of the domain that allows for any suitable discretization on the fine triangulation inside each coarse grid element. The estimator is based on the idea of a conforming reconstruction of the discrete diffusive flux, that can be computed using local information only. It is offline/online decomposable and can thus be efficiently used in the context of model reduction.
Herausgeber*innen: , Rohde C
Buchtitel: Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects
Veröffentlichungsjahr: 2014
Verlag: Springer International Publishing
Sprache, in der die Publikation verfasst ist: Englisch
Link zum Volltext: https://arxiv.org/abs/1401.7173