Approximation of skewed interfaces with tensor-based model reduction procedures: application to the reduced basis hierarchical model reduction approach

Ohlberger M, Smetana K

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this article we introduce a procedure, which allows to recover the potentially very good approximation properties of tensor-based model reduction procedures for the solution of partial differential equations in the presence of interfaces or strong gradients in the solution which are skewed with respect to the coordinate axes. The two key ideas are the location of the interface either by solving a lower-dimensional partial differential equation or by using data functions and the subsequent removal of the interface of the solution by choosing the determined interface as the lifting function of the Dirichlet boundary conditions. We demonstrate in numerical experiments for linear elliptic equations and the reduced basis-hierarchical model reduction approach that the proposed procedure locates the interface well and yields a significantly improved convergence behavior even in the case when we only consider an approximation of the interface.

Details zur Publikation

Jahrgang / Bandnr. / Volume321
Seitenbereich1185-1205
StatusVeröffentlicht
Veröffentlichungsjahr2016
Sprache, in der die Publikation verfasst istEnglisch
DOI: 10.1016/j.jcp.2016.06.021
Link zum Volltexthttp://arxiv.org/pdf/1406.7426.pdf
Stichwörterdimensional reduction; tensor-based model reduction; hierarchical model reduction; reduced basis methods; proper generalized decomposition; adaptive modelling

Autor*innen der Universität Münster

Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Smetana, Kathrin
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)