Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion Equations

Drohmann M, Haasdonk B, Ohlberger M

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Many application from science and engineering are based on parametrized evolution equations and depend on time-consuming parameter studies or need to ensure critical constraints on the simulation time. For both settings, model order reduction by the reduced basis methods is a suitable means to reduce computational time. In this proceedings, we show the applicability of reduced basis framework to a finite volume scheme of a parametrized and highly non-linear convection-diffusion problem with discontinuous solutions. The complexity of the problem setting requires the use of several new techniques like parametrized empirical operator interpolation, efficient a posteriori error estimation and adaptive generation of reduced data. These methods and their effects are shortly revised in this presentation and the new adaptive generation of interpolation data is described.

Details zur Publikation

Herausgeber*innenFort J. et al.
BuchtitelFinite Volumes for Complex Applications VI - Problems & Perspectives
Seitenbereich369-377
VerlagSpringer
Titel der ReiheSpringer Proceedings in Mathematics
Nr. in Reihe4 (1)
StatusVeröffentlicht
Veröffentlichungsjahr2011
Sprache, in der die Publikation verfasst istEnglisch
KonferenzFinite Volumes for Complex Applications VI - Problems & Perspectives, Prague, undefined
DOI: 10.1007/978-3-642-20671-9_39

Autor*innen der Universität Münster

Drohmann, Martin
Institut für Analysis und Numerik
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)