Self-stability in biological systems - Studies based on biomechanical models

Wagner H, Giesl P

Forschungsartikel (Zeitschrift)

Zusammenfassung

Mechanical properties of complex biological systems are non-linear, e.g. the force-velocity-length relation of muscles, activation dynamics, and the geometric arrangement of antagonistic pair of muscles. The control of such systems is a highly demanding task. Therefore, the question arises whether these mechanical properties of a muscle-skeletal system itself are able to support or guarantee for the stability of a desired movement, indicating self-stability. Self-stability of single joint biological systems were studied based on eigenvalues of the equation of motions and the basins of attraction were analysed using Lyapunov functions. In general, we found self-stability in single muscle contractions (e.g. frog, rat, cui), in human arm and leg movements, the human spine and even in the co-ordination of complex movements such as tennis or basketball. It seems that self-stability may be a general design criterion not only for the mechanical properties of biological systems but also for motor control.

Details zur Publikation

Veröffentlichungsjahr: 2006