A plane-sweep algorithm for the all-nearest neighbors problem for a set of convex planar objects

Graf T, Hinrichs KH

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

We present a plane-sweep algorithm that solves the all - nearest - neighbors problem with respect to an arbitrary Minkowski-metric d t (1 ≤ t ≤ ∞) for a set of non-intersecting planar compact convex objects, such as points, line segments, circular arcs and convex polygons. The algorithm also applies if we replace the condition of disjointness by the weaker condition that the objects in the configuration are diagonal-disjoint. For configurations of points, line segments or disks the algorithm runs in asymptotically optimal tune O(n log n). For a configuration of n convex polygons with a total of N edges it finds nearest neighbors with respect to the Euclidean L 2-metric in time O(n log N) if each polygon is given by its vertices in cyclic order.

Details zur Publikation

Herausgeber*innenDehne F, Sack J-R, Santoro N, Whitesides S
BuchtitelAlgorithms and Data Structures: Third Workshop, WADS '93 Montréal, Canada, August 11–13, 1993 Proceedings (Band 709)
Seitenbereich349-360
VerlagSpringer
ErscheinungsortBerlin Heidelberg
Titel der ReiheLecture Notes in Computer Science (ISSN: 0302-9743)
Nr. in Reihe709
StatusVeröffentlicht
Veröffentlichungsjahr1993
Sprache, in der die Publikation verfasst istEnglisch
KonferenzThird Workshop on Algorithms and Data Structures (WADS '93), Montréal, Canada, undefined
ISBN978-3-540-47918-5
DOI10.1007/3-540-57155-8_261

Autor*innen der Universität Münster

Graf, Tilmann
Klinik für Neurologie [geschlossen]
Hinrichs, Klaus
Professur für Praktische Informatik (Prof. Hinrichs)